
Let’s cache it
Ruby on Rails cache in examples

Mateusz Utkała
RRUG #34, 24.04.2023



Agenda

•What is caching
• Caching strategies
• Rails cache stores
• Examples
• Tips



There are only two hard things in Computer Science: 
cache invalidation and naming things.

PHIL KARLTON



What is caching

Cache is a high-speed data storage layer which stores a subset of data, 
so that future requests for that data are served up faster than is possible

by accessing the data’s primary storage location. 

Caching allows you to efficiently reuse previously computed data.



https://makeameme.org/meme/cache-cache-everywhere



Cache is everywhere

HTTP Cache Headers
Browser Cache

DNS HTTP Cache Headers
CDNs, Reverse Proxies

Key/Value stores
Local caches

https://aws.amazon.com/caching/

Key/Value data stores
Database buffers



Caching strategies – What to cache?

• Long running requests / queries

• Havy calculations

• Domain aggregated data

• Rarely changed data
§Configurations

https://imgflip.com/i/7aj2lr



Caching strategies – What to cache?



Caching strategies – Where to cache?

• In service memory

• Standalone service

• Distributed service



Caching strategies – When to cache?

• On Demand

• Pre-loading

• Lazy load



Caching strategies – How to cache?

Cache aside



Caching strategies – How to cache?

Read/Write through



Caching strategies – How to cache?

Read through



Caching strategies – How long to cache?

Never treat your cache as your database
even if it super reliable with great clustering features



Is it that good?

https://imgflip.com/i/7aiomg



Is it that good?
PROS
ü Accelerate data retrieval
ü Reduce the load on backend services
ü Fast respond to the user = good user experience
ü Respond to a lot of users = easy to scale

CONS
o Cache invalidation problem (stale data)
o Storage consumption
o Security risks



Rails cache

rails dev:cache



Rails cache



Rails cache store

ActiveSupport::Cache::Store

The main API methods are read, write, delete, exist?, and fetch.



Rails memory store

config.cache_store = :memory_store, { size: 32.megabytes }



Rails file store

config.cache_store = :file_store, "#{root}/tmp/cache/"

As the cache will grow until the disk is full, it is recommended
to periodically clear out old entries.



Rails memcached store

config.cache_store = :mem_cache_store, "cache-1.com”, "cache-2.com”

Bundled ’dalli gem’



Rails redis store

https://guides.rubyonrails.org/caching_with_rails.html#activesupport-cache-rediscachestore



https://redis.io/docs/reference/eviction/

Rails redis store

maxmemory-policy



Rails null store

config.cache_store = :null_store



Examples – Page caching
gem "actionpack-page_caching"



Examples – Page caching
gem "actionpack-page_caching"



Examples – Action caching



Examples – Action caching



Examples – Fragment caching

views/products/index:bea67108094918eeba42cd4a6e786901/products/1



Examples – Fragment caching



Examples – Nested fragment caching



Examples – Nested fragment caching



Examples – Low-level caching



Examples – SQL caching



Examples – SQL caching
Recyclable cache keys in Rails

Rails < 5.2
cache_key = {model_name}/{id}-{update_at}

”products/1-20230227080152975653"

Rails >= 5.2
cache_key = {model_name}/{id}

"products/1"

cache_version = {update_at}
"20230227080152975653"



Examples – SQL caching
Collection cache versioning

Rails < 6.0

Rails >= 6.0



Tips – expires_in vs expires_at in Rails 7

If both the expires_in and expires_at are set, expires_at gets priority.



Tips – Avoid direct cache AR queries



Tips – Avoid direct cache AR queries



Tips – Reduce cache size for AR objects



Tips – Reduce cache size for AR objects



Tips – Reduce cache size for AR objects



Tips – Jbuilder cache



Tips – Counter cache



Tips – Counter cache



Tips – Counter cache or query size



Good cache practices

• It’s usually better that the service implements cache, rather than the 
client
• Any playform that uses cache should be able to run completely

without it
• In SQL case the best way to implement caching is to avoid it. Always

double-check if adding a database index cannot save you from 
developing a complex cache expiration strategy.



https://imgflip.com/i/7aizl6



Sources:

• https://guides.rubyonrails.org/caching_with_rails.html

• https://www.nacnez.com/caching-in-microservices.html

• https://aws.amazon.com/caching/

• https://www.bigbinary.com/blog/rails-adds-support-for-
recyclable-cache-keys

• https://pawelurbanek.com/rails-active-record-caching

• https://github.com/rails/jbuilder

• https://bhserna.com/what-can-you-try-before-using-a-
counter-cache-in-rails.html

https://www.nacnez.com/caching-in-microservices.html
https://www.nacnez.com/caching-in-microservices.html
https://aws.amazon.com/caching/
https://www.bigbinary.com/blog/rails-adds-support-for-recyclable-cache-keys
https://www.bigbinary.com/blog/rails-adds-support-for-recyclable-cache-keys
https://pawelurbanek.com/rails-active-record-caching
https://github.com/rails/jbuilder
https://bhserna.com/what-can-you-try-before-using-a-counter-cache-in-rails.html
https://bhserna.com/what-can-you-try-before-using-a-counter-cache-in-rails.html

